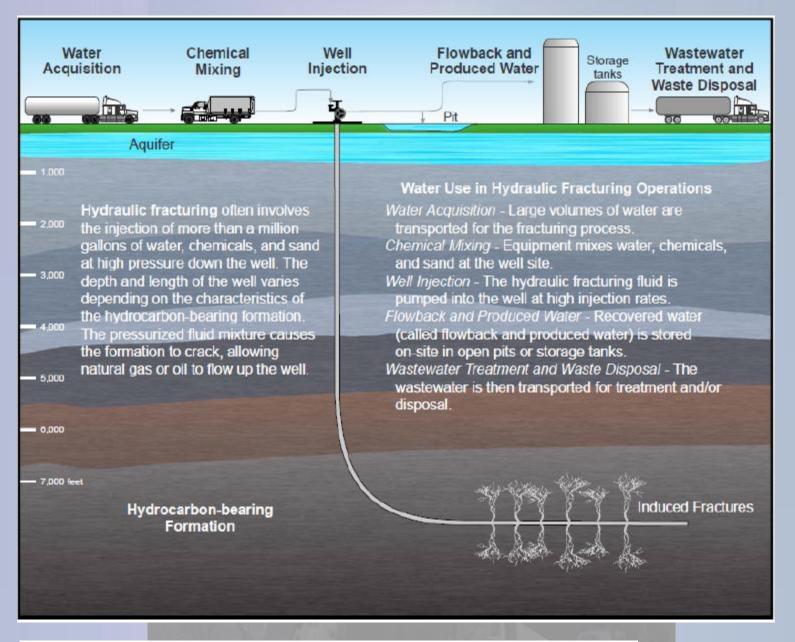
An Inorganic Nanogel for **Produced Water Shutoff**

Jeff Harwell (CBME) Ben Shiau (MPGE)

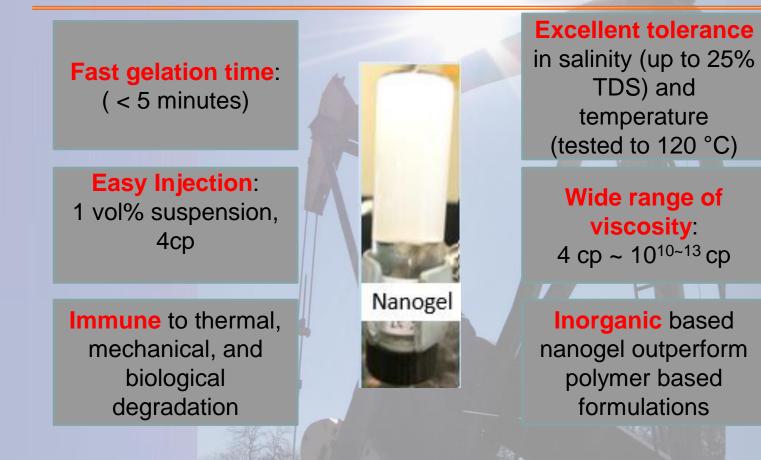


The University of Oklahoma

Aim of the Research:

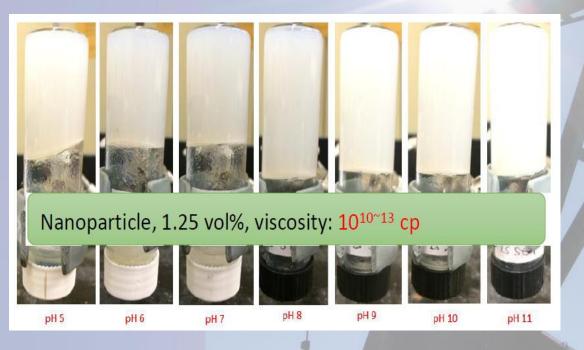
DEVELOPING ECONOMICAL AND EFFECTIVE WATER SHUTOFF TOOLS

http://www.epa.gov/hfstudy/HF_Study_Plan_110211_FINAL_508.pdf


OU Nanogel Technology

Robust and versatile chemistry applicable

to a wide range of reservoir conditions


Advantages of Nanogels

Nanogel vs. Other plugging materials

	Nanogel	Other PM (plugging materials)
Viscosity	4 ~ 10 ¹³ mPa.s Easy to adjust wide range in	10 ~ 150 mPa.s
	viscosity	
Stability in reservoir conditions	No biodegradation. High temperature/salinity tolerance (permanent)	Thermal and Biodegradation at high temperature (several months)
Structural peculiarities Deformation and strength properties	High deformation and strength (pseudo-solid gel)	Moderate deformation and strength
Injectivity effectiveness	No injectivity issue	Moderate
Conc. needed to form gel (wt%)	Less than 0.1 wt%	1~10 wt%
Cost (\$/lb)	~ \$1/lb	\$10/lb (polymer)

Design Strategy:

- Dispersion Stability (aggregate size, zeta potential)
- <u>Rheological Behavior</u>
 (viscosity at different shear rates, concentration of nanoparticles, temperatures)
- <u>Flow Tests</u> (quantify the efficiency of nanogels in coreflooding experiments)
- Field Pilot Test (collect data for full-scale design & implementation)

Summary

- The developed <u>pseudo-solid gel</u> which exhibits both strength and rigidity even at <u>low</u>
 <u>concentrations</u>
- Adjustable for a variety of permeability zones at different depths
- Excellent tolerance of harsh reservoir conditions
- Simple field operations and environmentally safe